If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-80x+576=0
a = 1; b = -80; c = +576;
Δ = b2-4ac
Δ = -802-4·1·576
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-64}{2*1}=\frac{16}{2} =8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+64}{2*1}=\frac{144}{2} =72 $
| -16t^2-31t=0 | | 0=-16t^2-31t | | 014-9.8t=0 | | 6x+6-6x-2=1 | | 3y–7=26 | | X²+10x-1200=0 | | 7x+5=4x-28 | | 7x+5=4x-27 | | 7x+5=4x-26 | | x+(x*0.04)+(x*0.05)=640 | | x+(x*0.05)+(x*0.05)=640 | | K=100-4(n=20) | | 4x=2x=60 | | 3^x+3^(x+2)=110 | | 64*x=1728 | | -9=(m-5)-m | | 2x-3x-4=3x-8 | | 4.5-x=-6.9 | | 4.5-x=(-6.9 | | v-15=(-13) | | 6v-15=(-13) | | 6.v-15=(-13) | | 8+w=(-10) | | 4x*3=120 | | 3n+13=10+7 | | (X=4x)+16=2x | | 11/8=52/x | | -32=3y+7(y+4) | | -7u+4(u-3)=-6 | | 39=-3v+8(v+3) | | 420Xx=1-3 | | 45x=10 |